Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742915

RESUMO

Every ecosystem shows multiple levels of species interactions, which are often difficult to isolate and to classify regarding their specific nature. For most of the observed interactions, it comes down to either competition or consumption. The modes of consumption are various and defined by the nature of the consumed organism, e.g., carnivory, herbivory, as well as the extent of the consumption, e.g., grazing, parasitism. While the majority of consumers are animals, carnivorous plants can also pose a threat to arthropods. Water fleas of the family Daphniidae are keystone species in many lentic ecosystems. As most abundant filter feeders, they link the primary production to higher trophic levels. As a response to the high predatory pressures, water fleas have evolved various inducible defenses against animal predators. Here we show the first example, to our knowledge, in Ceriodaphnia dubia of such inducible defenses of an animal against a coexisting plant predator, i.e., the carnivorous bladderwort (Utricularia x neglecta Lehm, Lentibulariaceae). When the bladderwort is present, C. dubia shows changes in morphology, life history and behavior. While the morphological and behavioral adaptations improve C. dubia's survival rate in the presence of this predator, the life-history parameters likely reflect trade-offs for the defense.


Assuntos
Cladocera , Lamiales , Animais , Planta Carnívora , Daphnia/fisiologia , Ecossistema , Comportamento Predatório/fisiologia
3.
Integr Comp Biol ; 61(2): 603-612, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-33956151

RESUMO

The elongate body plan is present in many groups of fishes, and this morphology dictates functional consequences seen in swimming behavior. Previous work has shown that increasing the number of vertebrae, or decreasing the intervertebral joint length, in a fixed length artificial system increases stiffness. Tails with increased stiffness can generate more power from tail beats, resulting in an increased mean swimming speed. This demonstrates the impacts of morphology on both material properties and kinematics, establishing mechanisms for form contributing to function. Here, we wanted to investigate relationships between form and ecological function, such as differences in dietary strategies and habitat preferences among fish species. This study aims to characterize and compare the kinematics, material properties, and vertebral morphology of four species of elongate fishes: Anoplarchus insignis, Anoplarchus purpurescens, Xiphister atropurpureus, and Xiphister mucosus. We hypothesized that these properties would differ among the four species due to their differential ecological niches. To calculate kinematic variables, we filmed these fishes swimming volitionally. We also measured body stiffness by bending the abdominal and tail regions of sacrificed individuals in different stages of dissection (whole body, removed skin, and removed muscle). Finally, we counted the number of vertebrae from CT scans of each species to quantify vertebral morphology. Principal component and linear discriminant analyses suggested that the elongate fish species can be distinguished from one another by their material properties, morphology, and swimming kinematics. With this information combined, we can draw connections between the physical properties of the fishes and their ecological niches.


Assuntos
Perciformes , Cauda/anatomia & histologia , Animais , Fenômenos Biomecânicos , Perciformes/anatomia & histologia , Perciformes/fisiologia , Especificidade da Espécie , Natação
4.
J Morphol ; 281(9): 1018-1028, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32621639

RESUMO

Many vertebrates are armored over all or part of their body. The armor may serve several functional roles including defense, offense, visual display, and signal of experience/capability. Different roles imply different tradeoffs; for example, defensive armor usually trades resistance to attack for maneuverability. The poachers (Agonidae), 47 species of scorpaeniform fishes, are a useful system for understanding the evolution and function of armor due to their variety and extent of armoring. Using publically available CT-scan data from 27 species in 16 of 21 genera of poachers we compared the armor to axial skeletal in the mid body region. The ratio of average armor density to average skeleton density ranged from 0.77 to 1.17. From a defensive point of view, the total investment in mineralization (volume * average density) is more interesting. There was 10 times the material invested in the armor as in the endoskeleton in some small, smooth plated species, like Aspidophoroides olrikii. At the low end, some visually arresting species like Percis japonica, had ratios as low as 2:1. We categorized the extent and type (impact vs. abrasion) in 34 Agonopsis vulsa across all 35+ plates in the eight rows along the body. The ventral rows show abrasive damage along the entire length of the fish that gets worse with age. Impact damage to head and tail plates gets more severe and occurs at higher rates with age. The observed damage rates and the large investment in mineralization of the armor suggest that it is not just for show, but is a functional defensive structure. We cannot say what the armor is defense against, but the abrasive damage on the ventrum implies their benthic lifestyle involves rubbing on the substrate. The impact damage could result from predatory attacks or from intraspecific combat.


Assuntos
Estruturas Animais/anatomia & histologia , Estruturas Animais/fisiologia , Perciformes/anatomia & histologia , Perciformes/fisiologia , Estruturas Animais/ultraestrutura , Animais , Osso e Ossos/anatomia & histologia , Minerais/metabolismo , Comportamento Predatório
5.
Sci Rep ; 9(1): 18590, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819121

RESUMO

We investigated the predator-prey interactions between an Australian ecotype of the carnivorous waterwheel plant (Aldrovanda vesiculosa, Droseraceae) and its potential natural prey, the water flea Daphnia longicephala (Daphniidae), which also occurs in Australia. A. vesiculosa develops snap-traps, which close within ~10-100 ms after mechanical triggering by zooplankton prey. Prey capture attempts (PCAs) were recorded via high-speed cinematography in the laboratory. From 14 recorded PCAs, nine were successful for the plant (the prey was caught), and five were unsuccessful (prey could escape), resulting in a capture rate of ~64%. The prey animals' locomotion behaviour (antenna beat frequency and movement type) in trap vicinity or inside the open traps is very variable. Traps were mainly triggered with the second antennae. During trap closure, the animals moved only very little actively. A flight response in reaction to an initiated trap closure was not observed. However, several animals could escape, either by having a "lucky" starting position already outside the triggered trap, by freeing themselves after trap closure, or by being pressed out by the closing trap lobes. According to our observations in the successful PCAs, we hypothesize that the convex curvature of the two trap lobes (as seen from the outside) and the infolded trap rims are structural means supporting the capture and retention of prey. Our results are discussed in a broader biological context and promising aspects for future studies are proposed.


Assuntos
Planta Carnívora/fisiologia , Droseraceae/fisiologia , Cadeia Alimentar , Animais , Austrália , Daphnia , Ecologia , Ecótipo , Modelos Biológicos , Movimento , Zooplâncton
6.
Nature ; 571(7764): 181-182, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31285601
7.
PLoS One ; 14(3): e0214013, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30901351

RESUMO

Filter feeding zooplankton are a crucial component of limnic food webs. Copepods and cladocerans are important prey organisms for first-level predators like the common and abundant larvae of phantom midges (Chaoborus sp.). The latter possess a complex catching basket built of head appendages specialized to capture small crustaceans. The predator-prey-relationship of Chaoborus (Diptera, Nematocera) and Daphnia (Crustacea, Cladocera) has been studied in particular detail owing to the daphniids' ability to react upon the threat of predation with inducible defenses. Daphnia pulex expresses so-called 'neckteeth' in the presence of Chaoborus larvae that are discussed as a defensive trait that interferes with the larval head appendages and their effectiveness has been shown in several studies. Nonetheless, mode of function of these neckteeth is not understood and the hypothesis that they interfere with the predator's head appendages still has to be confirmed. To clarify the role of neckteeth in Daphnia, an understanding of the Chaoborus capture apparatus is essential. Here, we present a detailed three-dimensional analysis of Chaoborus obscuripes' larval head morphology as well as a kinematic analysis of the attack motion, which revealed an impressive strike velocity (14 ms to prey contact). The movement of the larvae's head appendages is reconstructed in the three-dimensional space using a combination of high-speed videography, micro-computed tomography and computer animation. Furthermore, we provide predation trial data to distinguish between pre- and post-attack defensive effects in D. pulex. Our findings suggest a combination of pre- and post-attack defenses with an average effectiveness of 50% each. With this study, we quantitatively describe prey capture kinematics of C. obscuripes and take a further step to reveal the neckteeth' mode of function in D. pulex.


Assuntos
Cladocera/fisiologia , Copépodes/fisiologia , Dípteros/fisiologia , Larva/fisiologia , Comportamento Predatório/fisiologia , Animais , Cadeia Alimentar , Cabeça/fisiologia
8.
PeerJ ; 6: e4861, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900069

RESUMO

Quantitative analysis of shape and form is critical in many biological disciplines, as context-dependent morphotypes reflect changes in gene expression and physiology, e.g., in comparisons of environment-dependent phenotypes, forward/reverse genetic assays or shape development during ontogenesis. 3D-shape rendering methods produce models with arbitrarily numbered, and therefore non-comparable, mesh points. However, this prevents direct comparisons. We introduce a workflow that allows the generation of comparable 3D models based on several specimens. Translocations between points of modelled morphotypes are plotted as heat maps and statistically tested. With this workflow, we are able to detect, model and investigate the significance of shape and form alterations in all spatial dimensions, demonstrated with different morphotypes of the pond-dwelling microcrustacean Daphnia. Furthermore, it allows the detection even of inconspicuous morphological features that can be exported to programs for subsequent analysis, e.g., streamline- or finite-element analysis.

9.
Curr Biol ; 28(2): 327-332.e3, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29337079

RESUMO

Anthropogenically released CO2 accumulates in the global carbon cycle and is anticipated to imbalance global carbon fluxes [1]. For example, increased atmospheric CO2 induces a net air-to-sea flux where the oceans take up large amounts of atmospheric CO2 (i.e., ocean acidification [2-5]). Research on ocean acidification is ongoing, and studies have demonstrated the consequences for ecosystems and organismal biology with major impacts on marine food webs, nutrient cycles, overall productivity, and biodiversity [6-9]. Yet, surprisingly little is known about the impact of anthropogenically caused CO2 on freshwater systems due to their more complex biogeochemistry. The current consensus, yet lacking data evidence, is that anthropogenic CO2 does indeed affect freshwater carbon hydrogeochemistry, causing increased pCO2 in freshwater bodies [10-13]. We analyzed long-term data from four freshwater reservoirs and observed a continuous pCO2 increase associated with a decrease in pH, indicating that not only the oceans but also inland waters are accumulating CO2. We tested the effect of pCO2-dependent freshwater acidification using the cosmopolite crustacean Daphnia. For general validity, control pCO2-levels were based on the present global pCO2 average. Treatments were selected with very high pCO2 levels, assuming a continuous non-linear increase of pCO2, reflecting worst-case-scenario future pCO2 levels. Such levels of elevated pCO2 reduced the ability of Daphnia to sense its predators and form adequate inducible defenses. We furthermore determined that pCO2 and not the resulting reduction in pH impairs predator perception. If pCO2 alters chemical communication between freshwater species, this perturbs intra- and interspecific information transfer, which may affect all trophic levels.


Assuntos
Dióxido de Carbono/química , Daphnia/fisiologia , Cadeia Alimentar , Água Doce/química , Animais , Ecossistema , Percepção Olfatória , Feromônios/fisiologia
10.
Sci Rep ; 7(1): 9750, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851950

RESUMO

The freshwater crustacean Daphnia is known for its ability to develop inducible morphological defences that thwart predators. These defences are developed only in the presence of predators and are realized as morphological shape alterations e.g. 'neckteeth' in D. pulex and 'crests' in D. longicephala. Both are discussed to hamper capture, handling or consumption by interfering with the predator's prey capture devices. Additionally, D. pulex and some other daphniids were found to armour-up and develop structural alterations resulting in increased carapace stiffness. We used scanning transmission electron microscopy (STEM) and confocal laser scanning microscopy (CLSM) to identify predator-induced structural and shape alterations. We found species specific structural changes accompanying the known shape alterations. The cuticle becomes highly laminated (i.e. an increased number of layers) in both species during predator exposure. Using nano- and micro-indentation as well as finite element analysis (FEA) we determined both: the structure's and shape's contribution to the carapace's mechanical resistance. From our results we conclude that only structural alterations are responsible for increased carapace stiffness, whereas shape alterations appear to pose handling difficulties during prey capture. Therefore, these defences act independently at different stages during predation.


Assuntos
Exoesqueleto/fisiologia , Fenômenos Biomecânicos , Daphnia/fisiologia , Exoesqueleto/anatomia & histologia , Animais , Daphnia/anatomia & histologia , Água Doce , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
11.
Sci Rep ; 7(1): 1776, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28496168

RESUMO

We recorded capture events (CEs) of the daphniid Ceriodaphnia dubia by the carnivorous Southern bladderwort with suction traps (Utricularia australis). Independent to orientation and behavior during trap triggering, the animals were successfully captured within 9 ms on average and sucked in with velocities of up to 4 m/s and accelerations of up to 2800 g. Phases of very high acceleration during onsets of suction were immediately followed by phases of similarly high deceleration (max.: -1900 g) inside the bladders, leading to immobilization of the prey which then dies. We found that traps perform a 'forward strike' during suction and that almost completely air-filled traps are still able to perform suction. The trigger hairs on the trapdoors can undergo strong bending deformation, which we interpret to be a safety feature to prevent fracture. Our results highlight the elaborate nature of the Utricularia suction traps which are functionally resilient and leave prey animals virtually no chance to escape.


Assuntos
Fenômenos Biomecânicos , Lamiales/fisiologia
12.
J Morphol ; 277(10): 1320-8, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27418246

RESUMO

Daphnia (Crustacea, Cladocera) are well known for their ability to form morphological adaptations to defend against predators. In addition to spines and helmets, the carapace itself is a protective structure encapsulating the main body, but not the head. It is formed by a double layer of the integument interconnected by small pillars and hemolymphatic space in between. A second function of the carapace is respiration, which is performed through its proximal integument. The interconnecting pillars were previously described as providing higher mechanical stability against compressive forces. Following this hypothesis, we analyzed the carapace structure of D. pulex using histochemistry in combination with light and electron microscopy. We found the distal integument of the carapace to be significantly thicker than the proximal. The pillars appear fibrous with slim waists and broad, sometimes branched bases where they meet the integument layers. The fibrous structure and the slim-waisted shape of the pillars indicate a high capacity for withstanding tensile rather than compressive forces. In conclusion they are more ligaments than pillars. Therefore, we measured the hemolymphatic gauge pressure in D. longicephala and indeed found the hemocoel to have a pressure above ambient. Our results offer a new mechanistic explanation of the high rigidity of the daphniid carapace, which is probably the result of a light-weight construction consisting of two integuments bound together by ligaments and inflated by a hydrostatic hyper-pressure in the hemocoel. J. Morphol. 277:1320-1328, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Exoesqueleto/anatomia & histologia , Daphnia/anatomia & histologia , Resistência à Tração , Exoesqueleto/fisiologia , Exoesqueleto/ultraestrutura , Animais , Força Compressiva , Daphnia/fisiologia
13.
PLoS One ; 7(5): e36879, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22590631

RESUMO

Many prey species evolved inducible defense strategies that protect effectively against predation threats. Especially the crustacean Daphnia emerged as a model system for studying the ecology and evolution of inducible defenses. Daphnia pulex e.g. shows different phenotypic adaptations against vertebrate and invertebrate predators. In response to the invertebrate phantom midge larvae Chaoborus (Diptera) D. pulex develops defensive morphological defenses (neckteeth). Cues originating from predatory fish result in life history changes in which resources are allocated from somatic growth to reproduction. While there are hints that responses against Chaoborus cues are transmitted involving cholinergic neuronal pathways, nothing is known about the neurophysiology underlying the transmission of fish related cues. We investigated the neurophysiological basis underlying the activation of inducible defenses in D. pulex using induction assays with the invertebrate predator Chaoborus and the three-spined stickleback Gasterosteus aculeatus. Predator-specific cues were combined with neuro-effective substances that stimulated or inhibited the cholinergic and gabaergic nervous system. We show that cholinergic-dependent pathways are involved in the perception and transmission of Chaoborus cues, while GABA was not involved. Thus, the cholinergic nervous system independently mediates the development of morphological defenses in response to Chaoborus cues. In contrast, only the inhibitory effect of GABA significantly influence fish-induced life history changes, while the application of cholinergic stimulants had no effect in combination with fish related cues. Our results show that cholinergic stimulation mediates signal transmission of Chaoborus cues leading to morphological defenses. Fish cues, which are responsible for predator-specific life history adaptations involve gabaergic control. Our study shows that both pathways are independent and thus potentially allow for adjustment of responses to variable predation regimes.


Assuntos
Neurônios Colinérgicos/fisiologia , Culicidae/fisiologia , Daphnia/fisiologia , Reação de Fuga/fisiologia , Neurônios GABAérgicos/fisiologia , Smegmamorpha/fisiologia , Animais , Cadeia Alimentar , Comportamento Predatório/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...